Geometry of Schemes Problems

Week 2

I-30

A scheme is irreducible iff all (nonempty) open sets are dense.

Proof. Every open subset is dense \iff every nonempty open subset meets every other nonempty open set \iff some element is missing from the union of any pair of proper closed subsets.

I-31

Let X = Spec(R). X is reduced and irreducible iff R is a domain. X is irreducible iff R has a unique minimal prime, i.e. if the nilradical is prime.

Proof. Unique minimal prime \iff nilradical is prime

Suppose R has a unique minimal prime. Then

$$\sqrt{(0)} = \bigcap_{\text{primes P}} P = \bigcap_{\text{minimal primes P}} P$$

Thus the nilradical is prime.

On the other hand, the nilradical belongs to every prime ideal. Thus if it is prime then it is a prime ideal belonging to every other prime ideal, hence it is minimal and no other prime is minimal.

R irreducible \iff nilradical is prime

To see that this is equivalent to X being irreducible, suppose the nilradical is prime. Let $g, f \in \mathbb{R} \setminus \sqrt{(0)}$. Then $X_f \cap X_g \neq \emptyset$ since $\sqrt{(0)} \in X_f \cap X_g$. If $g \in \sqrt{(0)}$, then $X_g = \emptyset$. So any nonempty basis element is dense, and therefore the same is true for any open set (any open set is a union of dense basis elements).

Suppose now that the nilradical is not prime. Let $f, g \in R \setminus \sqrt{(0)}$ such that $fg \in \sqrt{(0)}$. Then $X_f \cap X_g = \emptyset$ since each prime contains $\sqrt{(0)}$, hence contains fg and therefore at least one of f and g. However neither X_f nor X_g is empty, for if so f or g would have to be in the nilradical.

X reduced and irreducible $\iff R$ is a domain

Since X is irreducible, the nilradical of R is prime, and since X is reduced R has trivial nilradical. Thus (0) is prime and R is a domain. On the other hand for a domain R, (0) is prime. Hence R is nilpotence-free so X is reduced. In addition, $(0) \in X_f \forall f \neq 0$ so that (0) is in all nonempty basic open sets, and therefore in all nonempty open sets. Therefore any two nonempty open sets meet one another, and so X is irreducible. \Box

I-34

An arbitrary scheme X is irreducible iff every open affine subset is irreducible. If |X| is connected as a topological space, this holds iff every local ring of \mathcal{O}_X has a unique minimal prime.

Proof. Suppose every affine open subset of X is irreducible, and let U and V be nonempty open sets. It must be shown that they meet one another. Let C_1 and C_2 be two affine open charts so that U meets C_1 and V meets C_2 (both necessarily in open sets).

Case 1: non-disjoint charts $C_1 \cap C_2 \neq \emptyset$, their intersection is an open set dense in both C_1 and C_2 . Hence U and V both meet the intersection, and thus $U \cap C_2 \neq \emptyset$. Then $U \cap V \cap C_2 \neq \emptyset$ because C_2 is irreducible and meets U and V.

Case 2: disjoint charts

If $C_1 \cap C_2 = \emptyset$, then by I-33, $C_1 \sqcup C_2$ is again an affine open. $U \cap V \cap (C_1 \sqcup C_2)$ is therefore nonempty. Suppose then that X is irreducible, and let C be an open affine chart with U and V nonempty open subsets of C. Since C is open, U and V are nonempty open subsets of X, so $U \cap V \neq \emptyset$ by irreducibility of

X.

If X is irreducible then if $p \in X$ belongs to an affine open U = Spec(R), U is irreducible. By I-31, R has a unique minimal prime q. Then $\mathcal{O}_{X,p} \cong R_p$ and the primes of this localization are the primes of R contained in p. Of these, q is the unique minimal prime in R, so its image is the unique minimal prime in $\mathcal{O}_{X,p}$.

According to Stackexchange, the converse is false.