Geometry of Schemes Problems

Week 6

II-31

Let B be the affine scheme $\operatorname{Spec}(K[s,t,u]/(su-t^2))$ and $\mathscr{X} = \operatorname{Spec}(K[x,y])$ the affine plane. Let $p \in B$ be the prime (s,t,u). Let $\phi : \mathscr{X} \to B$ be the map dual to $\phi^{\#} : K[s,t,u]/(su-t^2) \to K[x,y]$ by $s \mapsto x^2$, $u \mapsto y^2$, and $t \mapsto xy$. Show that ϕ is not flat over p.

Proof. The pre-image of p in B is identified with $\operatorname{Spec}(K \otimes_R K[x, y]/\phi^{\#}(s, t, u)K[x, y])$ where $R = K[s, t, u]/(su - t^2)$, which in particular contains a copy of K. The image of (s, t, u) is an ideal. Thus we can move all scalars to the righthand side and simplify the quotient so that $\phi^{-1}(p) = \operatorname{Spec}(K[x, y]/(x^2, xy, y^2))$

This is certainly not the limit of nearby fibers, since it is the spectrum of a 3-dimensional k-algebra. The pre-image of any other closed point q, say $q = (s - a, t - \sqrt{ac}, u - c)$ where a and c are squares in K, is $\operatorname{Spec}K[x, y]/(x^2 - a, xy - \sqrt{ac}, y^2 - c)$. But the ideal $(x^2 - a, xy - \sqrt{ac}, y^2 - c) = (x - \sqrt{a}, y - \sqrt{c}) \cap (x + \sqrt{a}, y + \sqrt{c})$ since these ideals are maximal and thus comaximal. Then by Chinese Remainder Theorem, $K[x, y]/(x^2 - a, xy - \sqrt{ac}, y^2 - c)$ is a 2-dimensional K-vector space. The pre-image consists of two opposite points, corresponding to the fact that ϕ is equivalent to the quotient of K[x, y] by the self-map $x \mapsto -x$, $y \mapsto -y$.