
Geometry of Schemes: II.3-4 Reduced Schemes

John Cobb

Problem 11

Suppose that K is algebraically closed, and let Z = SpecK[x1, . . . , xn]/I ⊂ An
K be any subscheme of

dimension 0 and degree 3, supported at the origin. Show that Z is isomorphic to either X = SpecK[x]/(x3)

or to

Y = SpecK[x, y]/(x2, xy, y2)

and X,Y are not isomorphic to each other.

Proof. Since Z = SpecR is a subscheme of dimension 0, we must have a unique maximal ideal m in R.

Since R is three-dimensional, m must be two-dimensional since R/m ∼= K. We know for a fact that m3 = 0.

Suppose not – then m3 ⊂ m2 ⊂ m would be a descending chain within the two-dimensional vector space m,

so either m = m2 (in which case Nakayama’s lemma gives m = 0) or m2 = m3 (in which case Nakayama’s

lemma gives m2 = 0). In either case, m3 = 0. Let a and b generate m and suppose first that m2 = 0. Then

the map K[x, y]→ R sending x 7→ a and y 7→ b has (x, y)2 = (x2, xy, y2) in the kernel and identifies R with

Y . Otherwise, it must be that m2 6= 0 but m3 = 0. This implies that m/m2 is a one-dimensional R/m = K-

vector space. Nakayama’s lemma says that m = (a, b) must be one-dimensional too – in particular, there is

some ring element r such that a = rb. This means that in the kernel of the surjection K[x, y]→ R described

above, we have (x, y)3 and some element of the form y − xf where f maps to r. Under the identification

y = xf , K[x, y] = K[x] and (x, y)3 = (x3), identifying R with X.

Problem 15

Consider for t 6= 0 the subschemes

Xt = {(0, 0), (t, 0), (0, t)} ⊂ A2
K ,

each consisting of three distinct points in A2
K .

Part A
Show that the limit scheme as t→ 0 is

X0 = SpecK[x, y]/(x2, xy, y2).

Proof. We define X0 by taking its ideal to be the limit as t→ 0 of the ideal It = (x, y)∩ (x− t, y)∩ (x, y− t).
Now, since each of ideals in the intersection is comaximal so

(x, y) ∩ (x− t, y) ∩ (x, y − t) = (x2 − tx, y2, xy, yx− yt) ∩ (x, y − t)
= (x2 − tx, y2, xy, y) ∩ (x, y − t)
= (x2 − tx, y) ∩ (x, y − t)
= (x3 − tx2, xy, yx2 − txy − tx2 + t2x, y2 − yt)
= (x3 − tx2, xy, x2 + tx, y2 − yt)
a = (x2, xy, y2 − yt)
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Geometry of Schemes II.3-4 Reduced Schemes Problem 15 (continued)

Taking t→ 0,

I0 = (x2, xy, y2).

Part B
Show that the restriction of a function f ∈ K[x, y] on A2

K on X0 determines and is determined by the values

at the origin of f and its first derivatives in every direction; thus we think of it as a first-order infinitesimal

neighborhood of the point (0, 0).

Proof. A function f on X0 takes its values in K[x, y]/(x2, xy, y2). So f can be represented uniquely in the

form

f(x, y) = a+ bx+ cy

since all higher terms are modded out. f(x, y) is determined by

• its value at the origin, since f(0, 0) = a,

• its derivative in the x-direction, since ∂
∂x (f) = b,

• its derivative in the y-direction, since ∂
∂y (f) = c.

Linear combinations of the derivative in the x and y directions give us first derivatives in every direction.

Part C
Show that X0 is contained in the union of any two distinct lines through (0, 0).

Proof. Let X1 and X2 be schemes representing two distinct lines through (0, 0). That is,

X1 = SpecK[x, y]/(α1x+ β1y), X2 = SpecK[x, y]/(α2x+ β2y),

where α1β2 − α2β1 is not zero. The union of two schemes corresponds to the scheme associated to the ideal

intersection. Thus

X1 ∪X2 = SpecK[x, y]/(α1x+ β1y) ∩ (α2x+ β2y).

To show that X0 is contained in this, it suffices to show that

(α1x+ β1y) ∩ (α2x+ β2y) ⊂ (x2, xy, y2).

The ideal on the left is radical since it is an intersection of prime ideals, so

(α1x+ β1y) ∩ (α2x+ β2y) =
√

(α1x+ β1y) ∩ (α2x+ β2y)) =
√

(α1α2x2 + (α1β2 + α2β1)xy + β1β2y2)

Computing the radical of a primary ideal is easy; for (f) = (cfa1
1 fa2

2 · · · fan
n ), it is always true that

√
(f) =

(f1f2 · · · fn) (see for example Ideals Varieties, and Algorithms page 186). Thus√
(α1α2x2 + (α1β2 + α2β1)xy + β1β2y2) = (α1α2x

2 + (α1β2 + α2β1)xy + β1β2y
2).

This is clearly a subset of (x2, xy, y2).

Part D
Show that X0 is not contained in any nonsingular curve and thus, in particular, is not the scheme-theoretic

intersection of any two nonsingular curves in A2
K .

Proof. Suppose it were contained in some nonsingular curve. The nonsingular condition gives us that the

zariski tangent space to X0 at every point x has dimenson equal to dim(X0, x). Note: If X is Noetherian,

this occurs if and only if OX,x is a regular local ring. This probably gives us some sort of problem.
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