Math 221 Worksheet 10
October 6, 2020
Section 2.8: Related Rates

1. A cube-shaped sponge is absorbing water, making it expand. Let S(t) and V (t) denote, respectively, the side-lengths
and volume of the sponge at time ¢.

(a) Find a function f such that V(t) = f(S(¢)). .
Vi) = Sw)? | so f i given by OO = X7

(b) Describe the meaning of the derivatives S’(t) and V' (¢). If we measure length in inches and time in minutes,
what units do ¢, S(t), V(¢), S'(¢t), and V'(¢) have?
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(c) What is the relation between S’(t) and V'(t)?

V= SEY°, sp VE) = 3S+) S (+)

(d) When the volume of the sponge is 8 cubic inches, it is absorbing water at a rate of 2 cubic inches per minute.
At that instant, how fast is the length of its sides changing?

S = Vit o Vi) . Pluggrmg s V)Y
33t 3V (+)%73

arel V)= 2, ve gt o' (e) =

2. A snowball is melting, causing its surface area to decrease at a rate of 1 cm?/min. How fast is its diameter decreasing
at the moment when the diameter is 10 cm? (Recall that the surface area of a sphere of radius r is 4772.)

Let D guote Hu dismuter of thi Snowball and A its
oortuce wn Ten A=TD So A= 26D’
olugams i A'= -\ ad D= 10, we find Fht

— _/‘—/ QM/MI.,/\_

s 10 20™

v
()
\




3. The volume of a cube is increasing at a rate of 10 cm?®/min. How fast is its surface area increasing at the moment
when its sides have length 30 cm?

Lt © = side lengtha
A = sSwfate arex
\/ = volum e .
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4. A hemispherical bowl of radius 10 cm contains water to a depth of d cm. Find the radius r of the surface of the
water as a function of d. Suppose that water is being added to the bowl, causing d to increase at a rate of 0.1
cm/hr. How fast is r increasing when d = 5 cm?
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5. A cylindrical swimming pool is being filled at a rate of 5 cubic feet per second. If the pool is 40 feet in diameter,
how fast is the water level rising when the pool is one third full?

L+ \/ = vokme of W ater
H = water [evel (or heght)
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6. The radius of a cylinder is increasing at a rate of 3 in./min., and its height is decreasing at a rate of 5 in./min. At
what rate is the volume of the cylinder changing when its radius is 10 in. and its height is 15 in.? Is the volume
increasing or decreasing?

Lo+ r = FNJ\\%} h = Le(‘5k+) \ ’—'—VO)U/'\AL— )

Thea

)
V=T, so V' = mw(Zec’h o+ c*h ).
Plugging in r/ =3 W =-5, =10, e h= 19,

e guh” @: T(2 10315+ o(-5)) = Y00 e )

The volume 75 Incceasing,

7. Assume that sand slowly poured onto a level surface will pile in the shape of a cone whose height is equal to the

diameter of its base. If sand is poured at 2 cubic meters per second, how fast is the height of the pile increasing
when its base is 8 meters in diameter? (Recall that the volume of a cone of radius r and height h is %wr2h.)

e V= volume nN="2v".

- W = %er@\ﬂ): %‘R\(‘S
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