Sections 3.2 and 3.3: Mean Value Theorem and Things about Derivatives and Graphs

1. State the mean value theorem.
2. Let $f(x)=\cos (\pi x) \sqrt{2 x+1}$. Show that there exists a number $c \in[0,4]$ such that $f^{\prime}(c)=1 / 2$.
3. Suppose that f is a differentiable function satisfying $f(1)=10$ and $f^{\prime}(x) \geq 2$ for every $x \in[1,4]$. Is it possible that $f(4)=15$? Justify your answer.
4. Prove that $|\sin x| \leq|x|$ for all x.
5. Prove that the function $f(x)=x^{3}+x+1$ has exactly one (real) root. (Hint: Use the intermediate value theorem to show that f has a root, and use the mean value theorem to show that f does not have two roots.)
6. Suppose that f is a differentiable function satisfying $\left|f^{\prime}(x)\right|<1$ for every $x \in[0,1]$. Prove that there exists at most one $c \in[0,1]$ such that $f(c)=c$.
7. Let $f(x)=x^{3}+x^{2}-x+1$. Determine where f is increasing and decreasing, and find its local minima and maxima.
8. Let $f(x)=x^{4}-4 x^{3}$.
(a) Determine where f is increasing and where is f decreasing.
(b) Find all local minima and maxima of f.
(c) Determine where f is concave up and where f is concave down.
(d) Find all inflection points of f.
(e) Sketch the graph of f.
9. Repeat Problem 8 with f replaced by the function $g(x)=\sin (x)+\cos (x)$ defined for $x \in[0,2 \pi)$.
10. Show that $\frac{1}{2 \sqrt{n+1}}<\sqrt{n+1}-\sqrt{n}<\frac{1}{2 \sqrt{n}}$ for all $n>0$.
11. Show that if $f^{\prime}(x)=0$ for all x, then f is constant. If $f^{\prime \prime}(x)=0$ for all x, what form must f take? What about if $f^{\prime \prime \prime}(x)=0$ for all x ?
