1. Compute the derivatives of the following functions:

(a)
$$f(x) = \frac{e^{4x}}{5x}$$

 $f'(x) = \frac{5 \times e^{4x} - e^{4x}}{25 \times^{2}}$

- (b) $f(x) = e^{x^2 + 5x}$ $f'(x) = e^{x^2 + 5x} (2x + 5)$
- (c) $f(x) = e^{2x} \sin(x)$ $f'(x) = e^{2x} \cdot 2 \cdot \sin(x) + e^{2x} \cos(x)$
- (d) $f(x) = \sin(e^{2x})$ $f'(x) = \cos(e^{2x})e^{2x} \cdot 2$

(e)
$$F(x) = \int_{2}^{x} e^{\cos(\tan(t^{2}))} dt.$$

 $F'(x) = e^{\cos(\tan(x^{2}))}$ (fundamental theorem of calculus)

2. Evaluate the following definite integrals:

(a)
$$\int_{-1}^{2} (x^{5} + e^{x}) dx$$

$$= \left(\frac{1}{6} \times^{6} + e^{\times}\right) \Big|_{-1}^{2}$$

$$= \frac{1}{6} \cdot 2^{6} + e^{2} - \left(\frac{1}{6}(-1)^{6} + e^{-1}\right)$$

(b)
$$\int_{0}^{1/2} (e^{y} + 2\cos(\pi y)) dy$$

= $\left(e^{y} + \frac{2}{\pi} \sin(\pi y) \right) \Big|_{0}^{\frac{1}{2}}$
= $e^{\frac{1}{2}} + \frac{2}{\pi} \sin(\frac{\pi}{2}) - \left(e^{0} + \frac{2}{\pi} \sin(0) \right)$
= $e^{\frac{1}{2}} + \frac{2}{\pi} - 1$

(c)
$$\int_{1}^{2} \frac{e^{\sqrt{2x}}}{\sqrt{x}} dx$$
Let $u = \sqrt{2x}$. Then $du = \frac{1}{\sqrt{2x}} dx$. So
$$\int_{1}^{2} \frac{e^{\sqrt{2x}}}{\sqrt{x}} dx = \int_{\sqrt{2}}^{2} e^{u} \sqrt{2} du = e^{u} \sqrt{2} \int_{\sqrt{2}}^{2}$$

$$= \sqrt{2} \left(e^{2} - e^{\sqrt{2}} \right).$$
(d)
$$\int_{0}^{\pi} \frac{\cos(x)}{e^{\sin^{2}(x)}} dx$$
Let $u = \sin(x)$. Then $du = \cos(x) dx$. So
$$\int_{0}^{\pi} \frac{\cos(x)}{e^{\sin^{2}(x)}} dx = \int_{0}^{0} \frac{1}{e^{u^{2}}} du = 0.$$
(Can also use symmetries of sine and cosine.)

3. For each of the following functions, determine its domain and range and whether it is one-to-one. If it is one-to-one, find its inverse.

(a)
$$f(x) = 4x - 5$$

domain: \mathbb{R} (all real numbers)
range: \mathbb{R}
It is one-to-one, say by the horizontal line test.
 $f^{-1}(x) = \frac{x+5}{y}$.
(b) $f(x) = x^2 - 5x$.
domain: \mathbb{R}
range: $f(x) = (x - \frac{5}{2})^2 - \frac{25}{4}$ and range is $\left[-\frac{25}{4}, \infty\right]$.
Not one-to-one; for example $f(0) = f(5)$.
(c) $f(x) = \sin(2x)$.
domain: \mathbb{R}
range: $[-1,1]$
Not one-to-one; for example $f(0) = f(\pi)$.
(d) $f(x) = \frac{3x-1}{2x+1}$
domain: $\mathbb{R} \setminus \{-\frac{1}{2}\}$ (all real numbers except $-\frac{1}{2}$)
range: $y = \frac{3x-1}{2x+1} \iff x = \frac{-y-1}{2y-3}$, provided $y \neq \frac{3}{2}$
 \longrightarrow range is $\mathbb{R} \setminus \{\frac{3}{2}\}$
It is one-to-one: If $f(x_1) = f(x_2)$, then algebra shows
 $f^{-1}(x) = \frac{-x-1}{2x-3}$.
 2

4. Compute the following limits:

(a)
$$\lim_{x \to \infty} \frac{e^{4x} - e^{-4x}}{2e^{4x} + e^{-4x}} = \lim_{x \to \infty} \frac{1 - e^{-8x}}{2e^{4x} + e^{-4x}} = \frac{1}{2}$$

(b)
$$\lim_{x \to \infty} e^{-x} \sin(3x^2)$$

 $-e^{-x} \leq e^{-x} \sin(3x^2) \leq e^{-x}$ and
 $\lim_{x \to \infty} e^{-x} = 0 = \lim_{x \to \infty} -e^{-x}$ so
 $\lim_{x \to \infty} e^{-x} \sin(3x^2) = 0$ by the squeeze theorem.
 $\lim_{x \to \infty} e^{-x} \sin(3x^2) = 0$ by the squeeze theorem.

5. If f is an invertible function and g is its inverse, then

$$g'(f(x)) = \frac{1}{f'(x)},$$

provided $f'(x) \neq 0$.

- (a) Use implicit differentiation to prove the above formula. Let y = f(x). Then g(y) = x. So g'(y)y' = 1, and thus $g'(f(x)) = g'(y) = \frac{1}{y'} = \frac{1}{f'(x)}$.
- (b) Given that the natural logarithm function $\ln x$ is the inverse of the natural exponential function e^x , what is $(\ln x)'$?

Let
$$X = e^t$$
. Then
 $(|n \times)' = \frac{1}{\frac{1}{dt}e^t} = \frac{1}{e^t} = \frac{1}{X}$.

(c) Evaluate
$$\int_{1}^{2} \frac{1}{x} dx$$
.

$$\int_{1}^{2} \frac{1}{x} dx = \ln x \Big|_{1}^{2} = \ln 2.$$