1. For each of the following, evaluate the limit or show that it does not exist.
(a) $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$
(b) $\lim _{x \rightarrow 1} \frac{1-x}{1+\cos (x)}$
(c) $\lim _{x \rightarrow 0^{+}} \sqrt{x} \ln x$
(d) $\lim _{x \rightarrow \infty}(\ln x)^{\frac{1}{x}}$
(e) $\lim _{t \rightarrow 0} \frac{e^{3 t}-1}{\sin (t)}$
(f) $\lim _{x \rightarrow \infty} \frac{\ln (x)}{\sqrt{x}}$
(g) $\lim _{x \rightarrow 1^{+}}\left[\ln \left(x^{7}-1\right)-\ln \left(x^{5}-1\right)\right]$
(h) $\lim _{y \rightarrow 0} \frac{\sin y}{y+\tan y}$
(i) $\lim _{x \rightarrow \infty}\left(1+\frac{4}{x}\right)^{x}$
2. Determine values of a and b such that $\lim _{x \rightarrow 0}\left(\frac{\sin (2 x)}{x^{3}}+2 b+\frac{a}{x^{2}}\right)=0$.
3. Let $f(x)=x^{2}$ and $g(x)=\sqrt{x}$
(a) Find all points where the graphs of f and g intersect. Sketch the graphs.
(b) Find the area of the bounded region(s) enclosed by the graphs of f and g.
4. Repeat Problem 3 for the following pairs of functions:
(a) $f(x)=x^{3}$ and $g(x)=x$
(b) $f(x)=\sin (x)$ and $g(x)=1-\sin (x)$ for $0 \leq x \leq \pi$
(c) $f(x)=\sqrt{1-x^{2}}$ and $g(x)=\frac{1-x^{2}}{2}$ for $-1 \leq x \leq 1$
