Math 221 Worksheet 26
December 8, 2020
Section 5.2: Volumes

1. Let R denote the region bounded by the curves y = 2%, x = 2, and y = 0. Find the volume of the solid whose
horizontal base is R and whose vertical cross sections are semi-disks.
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2. Find the volume of the solid whose horizontal base is a disk of radius r and whose 2Vertical cross sections are
equilateral triangles. (Hint: The area of an equilateral triangle with side-length s is @Ts)
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3. Find a formula for the volume of a right pyramid whose base is an equilateral triangle of side-length s and whose
height is h.
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4. Find the volume of the solid obtalned by revolving the region bounded by the curves y = v/9 — 22 and y = 0 about
the z-axis.
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5. Find the volume of the solid obtained by revolving the region enclosed by the curves x =
and = 0 about the y-axis.
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6. Find the volume of the solid obtained by revolving the region bounded by the curves y =

cos(z) (0 <z <
y =0, and « = 0 about the z-axis.
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7. Write down an integral that represents the volume of the solid obtained by revolving the region bounded by the
curves y = 4 — 22 and y = 2 — x about the z-axis.
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8. Write down an integral that represents the volume of the solid obtained by revolving the region bounded by the
curves y = 2% and y = 1 about the line y = —2.
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9. Write down an integral that represents the volume of the solid obtained by revolving the region bounded by the
curves y = /z, y = 2, and = 0 about the line z = 4.
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