- 1. For each of the following solids, write down and integral representing its volume. (You can use any method.)
 - (a) The solid obtained by rotating the region bounded by the curves y = 0, x = 0, and y = 3 3x about the y-axis

(b) The solid obtained by rotating the region bounded by the curves y = 0, x = 2, and y = 3x - 3 about the x-axis

(c) The solid obtained by rotating the region from (b) about the y-axis

(d) The solid obtained by rotating the region from (b) around the line x = -1

(e) The solid obtained by rotating the region from (b) around the line y = -2

(f) The solid obtained by rotating the region bounded by the curves y = x and $y = \sqrt{x}$ about the line x = 5

(g) The solid obtained by rotating the region bounded by the curves $y = (x - 1)^2 - 1$ and y = 2x about the line x = -4

- 2. For each of the following functions f and intervals I, compute the average value of f on I.
 - (a) $f(x) = \sin(2x), I = [0, \pi/2]$

(b)
$$f(x) = x^2 + 3, I = [-1, 1]$$

(c) $f(x) = \frac{\ln x}{x}, I = [1, 2]$

- 3. Let R_{δ} be the region bounded by the curves $x = \delta$, x = 1, y = 0, and $y = x^{-1/2}$, where $0 < \delta < 1$. Let S_{δ} be the solid obtained by rotating R_{δ} about the x-axis. Let Area (R_{δ}) denote the area of R_{δ} and let and Vol (S_{δ}) denote the volume of S_{δ} .
 - (a) Determine $\operatorname{Area}(R_{\delta})$ and $\operatorname{Vol}(S_{\delta})$.

(b) Determine $\lim_{\delta \to 0^+} \operatorname{Area}(R_{\delta})$ and $\lim_{\delta \to 0^+} \operatorname{Vol}(S_{\delta})$.

(c) If we now allow δ to be zero, what can you say about the area of R_0 and the volume of S_0 ?