1. For each of the following solids, write down and integral representing its volume. (You can use any method.)
(a) The solid obtained by rotating the region bounded by the curves $y=0, x=0$, and $y=3-3 x$ about the y-axis
(b) The solid obtained by rotating the region bounded by the curves $y=0, x=2$, and $y=3 x-3$ about the x-axis
(c) The solid obtained by rotating the region from (b) about the y-axis
(d) The solid obtained by rotating the region from (b) around the line $x=-1$
(e) The solid obtained by rotating the region from (b) around the line $y=-2$
(f) The solid obtained by rotating the region bounded by the curves $y=x$ and $y=\sqrt{x}$ about the line $x=5$
(g) The solid obtained by rotating the region bounded by the curves $y=(x-1)^{2}-1$ and $y=2 x$ about the line $x=-4$
2. For each of the following functions f and intervals I, compute the average value of f on I.
(a) $f(x)=\sin (2 x), I=[0, \pi / 2]$
(b) $f(x)=x^{2}+3, I=[-1,1]$
(c) $f(x)=\frac{\ln x}{x}, I=[1,2]$
3. Let R_{δ} be the region bounded by the curves $x=\delta, x=1, y=0$, and $y=x^{-1 / 2}$, where $0<\delta<1$. Let S_{δ} be the solid obtained by rotating R_{δ} about the x-axis. Let $\operatorname{Area}\left(R_{\delta}\right)$ denote the area of R_{δ} and let and $\operatorname{Vol}\left(S_{\delta}\right)$ denote the volume of S_{δ}.
(a) Determine $\operatorname{Area}\left(R_{\delta}\right)$ and $\operatorname{Vol}\left(S_{\delta}\right)$.
(b) Determine $\lim _{\delta \rightarrow 0^{+}} \operatorname{Area}\left(R_{\delta}\right)$ and $\lim _{\delta \rightarrow 0^{+}} \operatorname{Vol}\left(S_{\delta}\right)$.
(c) If we now allow δ to be zero, what can you say about the area of R_{0} and the volume of S_{0} ?
