Math 221 Worksheet 4 September 15, 2020 Section 1.7 - Formal definition of limit

Formal definition of limit. We write $\lim_{x\to a} f(x) = L$ if for every number $\epsilon > 0$ there is a number $\delta > 0$ such that if $0 < |x - a| < \delta \text{ then } |f(x) - L| < \epsilon.$

1. Find a number $\delta > 0$ such that if $|x-3| < \delta$ then |3x-9| < 1. Find a (possibly different) number $\delta > 0$ such that if $|x-3| < \delta$ then |3x-9| < 0.09.

$$|3x-9| < 1 \Leftrightarrow 3|x-3| < 1$$
 $|3x-9| < 0.09 \Leftrightarrow 3|x-3| < 0.09$
 $|x-3| < \frac{1}{3}|$

So if $S = \frac{1}{3}$, then
$$|x-3| < S \text{ implies } |3x-9| < 1.$$

Using the formal definition of limit, prove the following:

- 2. Using the formal definition of limit, prove the following:
 - (a) $\lim_{x \to 3} 3x = 9$

Let
$$\& 70$$
 be given.
 $|3\times -9| < \& \iff 3|\times -3| < \& \iff |\times -3| < \& \iff |\times -3| < \& %$.
So if $\& = & & \& %$, then $|\times -3| < \& %$ implies $|3\times -9| < \& %$.

(b) $\lim_{x \to -3} 6x + 7 = -11$

Let 270 be given.

$$|6x+7-(-11)| < \xi \iff 6|x+3| < \xi$$

 $\iff |x+3| < \frac{\xi}{6}$.
So if $S = \frac{\xi}{6}$, then $|x-(-3)| < 8$ implies $|6x+7-(-11)| < \xi$.

(c) $\lim_{u \to 0} \sin u = 0$ (hint: $|\sin u| \le |u|$ for all numbers u)

Let
$$\varepsilon > 0$$
 be given.
 $|\sin w - 0| = |\sin w| \le |u|$, so if $\delta = \varepsilon$,
then $|u - 0| < \delta$ implies $|\sin w - 0| < \varepsilon$.

- 3. Consider the function $f(x) = x^3$.
 - (a) Determine $\lim_{x\to 0} f(x)$ and sketch the graph of f.

$$\lim_{x\to 0} f(x) = 0^3 = 0 \quad (by limit laws)$$

(b) Let $\epsilon = 2$ and use your graph from (a) to find a number $\delta > 0$ such that $0 < |x| < \delta$ implies $|f(x)| < \epsilon$.

S = 3/2 will work

(c) Repeat part (b) with $\epsilon = 1$. If you were to repeat (b) for an arbitrary $\varepsilon > 0$, what δ would you choose?

4. Challenge: Prove that $\lim_{x\to 1} x^2 = 1$. (Hint: If $|x-1| < \delta$, then how large can |x+1| be?)

$$|x+1| = |x-1+2| \leq |x-1|+2 < \delta+2$$
.

$$S(2+8) \leq S \cdot 3 \leq \varepsilon$$
 if $S \leq \frac{\varepsilon}{3}$. So $S = \min\{1, \frac{\varepsilon}{3}\}$ works.