1. State the definition of continuity.
2. True or False: If $\lim _{x \rightarrow 0} f(x)$ exists, then $f(x)$ is continuous at $x=0$. (If the statement is true, explain why. If the statement is false, come up with a counterexample.)
3. Draw a graph of a function $h(t)$ that satisfies all of the following properties.
(a) The domain of h is all real numbers and the range of h is all positive real numbers.
(b) $h(t)$ is not continuous at $t=1$ and at $t=4$.
(c) $\lim _{t \rightarrow 1^{+}} h(t)=2$ and $\lim _{t \rightarrow 1^{-}} h(t)=2$.
(d) $\lim _{t \rightarrow 4^{+}} h(t)=1$ and $\lim _{t \rightarrow 4^{-}} h(t)=3$.
4. Consider the function $g(x)=\left\{\begin{array}{cc}x & x<-2 \\ b x^{2} & x \geq-2,\end{array}\right.$ where b is some number.
(a) Compute $\lim _{x \rightarrow-2^{-}} g(x)$.
(b) Compute $\lim _{x \rightarrow-2^{+}} g(x)$.
(c) Compute $g(-2)$.
(d) For what value of b will $\lim _{x \rightarrow-2} g(x)$ exist?
5. Let $f(x)=-8 x^{4}+2 x^{3}-x+1$. Use the intermediate value theorem to show that $f(c)=0$ for some $c \in[0,1]$.
6. Show that there exists an intersection point between the graphs of $y=\sin (x)$ and $y=4^{x / \pi}$ in the interval $\left(\frac{-3 \pi}{2}, 0\right)$.
7. Locate the discontinuities of the function $f(x)=\frac{4}{1+\cos (x)}$.
