Math 221 Worksheet 7
September 24, 2020
Section 2.3 - Differentiation Formulas

1. Let f(z) =2z +2 and g(z) =2z — 1.
(a) Compute f'(x) and ¢'(x).
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(b) Compute [f(z)g(x)]’. How does it compare to f'(z)g’'(z)?

£(x) 9 (XY = (x+2)(Zx=0) = IX* +3%x -2,
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2. Let f and g be functions such that f(2) = 3, f/(2) = —1, ¢g(2) = =5, and ¢'(2) = 2. Use differentiation rules to
find A/(2) if:

(a) h(z) =3f(z) - g(x)
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3. Compute the derivatives of the following functions:

(a) flx) = dn?
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(b) f(z)=a2+2x+4
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4. Suppose that f is a function whose graph passes through the point (4,3) and that the tangent line at (4,3) also
passes through the point (0, 2).

(a) Sketch the tangent line along with a possible graph of f (make sure to label the two given points).
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(b) Find an equation of the tangent line you drew.

slo‘oe = a’_’g = I‘( ; ‘msscs -H/\ﬂ‘«g\« (4, 3) .
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(c) What is f(4)? What is f'(4)?
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5. Let f(z) = i el What is (z + 1) f(x)? Can you use this to come up with a formula for f’(x) without using the

quotient rule?
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6. Optional/challenge: Let P and @ be polynomials such that P(1) = Q(1) = 0 and Q'(1) # 0. Show that

lim,_.q ggg = S:EB (If you know L’Hépital’s rule, you may NOT use it!)
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