1. Let $f(x)=x+2$ and $g(x)=2 x-1$.
(a) Compute $f^{\prime}(x)$ and $g^{\prime}(x)$.
(b) Compute $[f(x) g(x)]^{\prime}$. How does it compare to $f^{\prime}(x) g^{\prime}(x)$?
2. Let f and g be functions such that $f(2)=3, f^{\prime}(2)=-1, g(2)=-5$, and $g^{\prime}(2)=2$. Use differentiation rules to find $h^{\prime}(2)$ if:
(a) $h(x)=3 f(x)-g(x)$
(b) $h(x)=f(x) g(x)$
(c) $h(x)=\frac{1}{f(x)}$
(d) $h(x)=\frac{g(x)}{f(x)}$
3. Compute the derivatives of the following functions:
(a) $f(x)=4 \pi^{2}$
(b) $f(x)=x^{3}+2 x+4$
(c) $f(x)=\frac{x^{2}-2 x+1}{\sqrt{x}}$
(d) $f(x)=\frac{2 x-1}{3 x+2}$
4. Suppose that f is a function whose graph passes through the point $(4,3)$ and that the tangent line at $(4,3)$ also passes through the point $(0,2)$.
(a) Sketch the tangent line along with a possible graph of f (make sure to label the two given points).
(b) Find an equation of the tangent line you drew.
(c) What is $f(4)$? What is $f^{\prime}(4)$?
5. Let $f(x)=\frac{x-1}{x+1}$. What is $(x+1) f(x)$? Can you use this to come up with a formula for $f^{\prime}(x)$ without using the quotient rule?
6. Optional/challenge: Let P and Q be polynomials such that $P(1)=Q(1)=0$ and $Q^{\prime}(1) \neq 0$. Show that $\lim _{x \rightarrow 1} \frac{P(x)}{Q(x)}=\frac{P^{\prime}(1)}{Q^{\prime}(1)}$. (If you know L'Hôpital's rule, you may NOT use it!)
