1. Uh oh! On the test, you are asked to find the derivative of $y=\sqrt{\frac{x-1}{x+1}}$. You remember you did this problem on a worksheet using the quotient rule, but after staying up all night studying, you completely forgot how to do the quotient rule. Can you find y^{\prime} using implicit differentiation without using the quotient rule?

Solution. Square both sides. Then $y^{2}=\frac{x-1}{x+1}$. Now let's use implicit differentiation and insert our formula for $y=y(x)$.

$$
\begin{aligned}
2 y y^{\prime} & =\frac{x+1-(x-1)}{(x+1)^{2}}=\frac{2}{(x+1)^{2}} \\
\Rightarrow y^{\prime} & =\frac{1}{(x+1)^{2} y}=\frac{1}{(x+1)^{2} \sqrt{\frac{x-1}{x+1}}} \\
& \Rightarrow y^{\prime}=\frac{1}{(x+1)^{3 / 2} \sqrt{x-1}}
\end{aligned}
$$

2. We will use implicit differentiation to find $\frac{d^{2} c}{d w^{2}}$ when $c^{3}+w^{3}=1$.
(a) Use implicit differentiation to find $\frac{d c}{d w}$ in terms of w and c.

Solution. Differentiate both sides of the equation $c^{3}+w^{3}=1$ with respect to w.

$$
\begin{gathered}
3 c^{2} \frac{d c}{d w}+3 w^{2}=0 \\
\Rightarrow \frac{d c}{d w}=\frac{-w^{2}}{c^{2}}
\end{gathered}
$$

(b) Differentiate both sides to find $\frac{d^{2} c}{d w^{2}}$ in terms of w, c, and $\frac{d c}{d w}$.

Solution.

$$
\begin{aligned}
\frac{d^{2} c}{d w^{2}} & =\frac{d}{d w}\left(\frac{-w^{2}}{c^{2}}\right) \\
& =\frac{-2 w c^{2}+2 w^{2} c \frac{d c}{d w}}{c^{4}}
\end{aligned}
$$

(c) Substitute in your answer to (a) into your answer to (b) to get $\frac{d^{2} c}{d w^{2}}$ in terms of w and c only.

Solution.

$$
\begin{aligned}
\frac{d^{2} c}{d w^{2}} & =\frac{-2 w c^{2}+2 w^{2} c \frac{d c}{d w}}{c^{4}} \\
& =\frac{-2 w c^{2}+2 w^{2} c\left(\frac{-w^{2}}{c^{2}}\right)}{c^{4}} \\
& =\frac{-2 w}{c^{2}}+\frac{2 w^{4}}{c^{5}}
\end{aligned}
$$

3. A sponge, in the shape of a cube, is absorbing water, making it expand. Let $S(t)$ denote the length of its side at time t and let $V(t)$ denote its volume in cubic units.
(a) Find a function f so that $V(t)=f(S(t))$.

Solution. If $S(t)$ is the side length at a certain time, then the volume is $S(t)^{3}$. For $f(z)=z^{3}$, we have $V(t)=S(t)^{3}=f(S(t))$.
(b) Describe the meaning of the derivatives $S^{\prime}(t)$ and $V^{\prime}(t)$. If we measure length in inches and time in minutes, what units do $t, S(t), V(t), S^{\prime}(t), V^{\prime}(t)$ have?

Solution. $\quad S^{\prime}(t)$ describes the rate at which the length $S(t)$ of a side of the cube is changing in time. Its units are inches per minute ($\left.\frac{\mathrm{in} .}{\mathrm{min} .}\right)$
$V^{\prime}(t)$ describes the rate at which the volume $S(t)$ of the cube is changing in time. Its units are cubic inches per minute $\left(\frac{\mathrm{in}^{3}}{\mathrm{~min} .}\right)$
(c) What is the relation between $S^{\prime}(t)$ and $V^{\prime}(t)$?

Solution. $\quad V(t)=S(t)^{3}$. Therefore $V^{\prime}(t)=3 S(t)^{2} S^{\prime}(t)$.
(d) When the sponge's volume is 8 cubic inches, it is absorbing water at a rate of 2 cubic inches per minute. How fast is its side, $S(t)$, growing at this instant?

Solution. The given information tells us that $V(t)=8$ and $V^{\prime}(t)=+2$. We have $V(t)=S(t)^{3}=8$, so $S(t)=2$. Using the equation $V^{\prime}(t)=3 S(t)^{2} S^{\prime}(t)$, we have

$$
\begin{gathered}
2=3(2)^{2} S^{\prime}(t) \\
\Rightarrow S^{\prime}(t)=\frac{1}{6} \mathrm{in} . / \mathrm{min}
\end{gathered}
$$

4. A snowball is melting so that its surface area is decreasing at a rate of $1 \mathrm{~cm}^{2} / \mathrm{min}$. How fast is the diameter decreasing when the diameter is 10 cm ? Hint: the surface area of a sphere is $S=4 \pi r^{2}$.

Solution. Surface area is a function of diameter (radius is half diameter):

$$
S(d)=4 \pi(d / 2)^{2}=\pi d^{2}
$$

The snowball's diameter is a function of time; it is changing in time. The given information says that at some time t, we have $\frac{d}{d t} S(d(t))=1$ and $d(t)=10$. Therefore:

$$
\begin{aligned}
S(d(t)) & =\pi d(t)^{2} \\
\Rightarrow \frac{d}{d t} S(d(t)) & =2 \pi d(t) d^{\prime}(t) \\
\Rightarrow 1 & =2 \pi \cdot 10 \cdot d^{\prime}(t) \\
\Rightarrow d^{\prime}(t) & =\frac{1}{20 \pi} \mathrm{~cm} . / \mathrm{min}
\end{aligned}
$$

5. The volume of a cube is increasing at a rate of $10 \mathrm{~cm}^{3} / \mathrm{min}$. How fast is the surface area increasing when the length of an edge is 30 cm ?

Solution. The volume of a cube is $V(s)=s^{3}$, where s is the side length of an edge. If $s=s(t)$, then at the instant t when $t=30$, we have:

$$
\begin{aligned}
\frac{d}{d t} V(s(t)) & =\frac{d}{d t} s(t)^{3}=3 s(t)^{2} s^{\prime}(t) \\
\Rightarrow 10 & =3(30)^{2} s^{\prime}(t) \\
\Rightarrow s^{\prime}(t) & =\frac{10}{2700}=\frac{1}{270} \mathrm{~cm} . / \mathrm{min}
\end{aligned}
$$

6. A hemispherical bowl of radius 10 cm contains water to a depth of $h \mathrm{~cm}$. Find the radius r of the surface of the water as a function of h. If you are adding water to the bowl, so that the height is increasing at a rate of $.1 \mathrm{~cm} / \mathrm{hr}$, how fast is the radius increasing when the depth is 5 cm ?

Solution.

Drawing a picture, we see $(10-h)^{2}+r^{2}=10^{2}$. Now write $r=r(t)$ and use implicit differentiation.

$$
-2(10-h) \frac{d h}{d t}+2 r \frac{d r}{d t}=0
$$

Inserting $h=5, \frac{d h}{d t}=0.1, r=\sqrt{10^{2}-9.9^{2}}$, we have:

$$
\frac{d r}{d t}=\frac{2(10-h) \frac{d h}{d t}}{2 r}=\frac{2(10-5)(0.1)}{2 \sqrt{10^{2}-9.9^{2}}}=\frac{1}{2 \sqrt{10^{2}-9.9^{2}}} \mathrm{~cm} . / \mathrm{hr}
$$

7. A cylindrical swimming pool is being filled at a rate of 5 cubic feet per second. If the pool is 40 feet across, how fast is the water level rising when the pool is one third full?

Solution. The volume of a cylinder with radius r and height h is $V(r, h)=\pi r^{2} h$. In this setup, r is a constant and $h=h(t)$. Therefore:

$$
\frac{d V}{d t}=\pi r^{2} \frac{d h}{d t}
$$

Inserting our given information, this equation becomes:

$$
5=\pi(20)^{2} \frac{d h}{d t} \Rightarrow \frac{d h}{d t}=\frac{1}{80 \pi} \mathrm{ft} . / \mathrm{sec}
$$

8. The radius of a right circular cylinder is increasing at a rate of $3 \mathrm{in} / \mathrm{min}$ and the height is decreasing at a rate of $5 \mathrm{in} / \mathrm{min}$. At what rate is the volume changing when the radius is 10 in and the height is 15 in ? Is the volume increasing or decreasing?

Solution. Using again $V=\pi r^{2} h$, now $r=r(t)$ and $h=h(t)$. Therefore:

$$
V^{\prime}=2 \pi r r^{\prime} h+\pi r^{2} h^{\prime}
$$

Inputting the given information:

$$
V^{\prime}=2 \pi(10)(3)(15)+\pi(10)^{2}(-5)=400 \pi \mathrm{in}^{3} / \mathrm{min}
$$

9. Assume that sand allowed to pour onto a level surface will form a pile in the shape of a cone, with height equal to the diameter of the base. If sand is poured at 2 cubic meters per second, how fast is the height of the pile increasing when the base is 8 meters in diameter?
Note: Given a cone of radius r and height h, its volume is $V=\frac{1}{3} \pi r^{2} h$.

Solution. We have $r=r(t), h=h(t)$. Using implicit differentatiaion:

$$
V^{\prime}=\frac{2}{3} \pi r r^{\prime} h+\frac{1}{3} \pi r^{2} h^{\prime} .
$$

The given information is: $V^{\prime}=2, r=8 / 2=4$, and $h=8$. The ratio between height and radius will always be $\frac{h}{4}=2$, so $h=2 r$ and therefore $r^{\prime}=\frac{1}{2} h^{\prime}$. We have:

$$
\begin{aligned}
V^{\prime} & =\frac{2}{3} \pi r r^{\prime} h+\frac{1}{3} \pi r^{2}\left(2 r^{\prime}\right) \\
\Rightarrow 2 & =\frac{2}{3} \pi(4)(8) r^{\prime}+\frac{2}{3} \pi(4)^{2} r^{\prime} \\
\Rightarrow r^{\prime} & =\frac{3}{48 \pi} \mathrm{in} . / \mathrm{min} \\
\Rightarrow h^{\prime} & =2 \cdot \frac{3}{48 \pi} \\
\Rightarrow h^{\prime} & =\frac{1}{8 \pi} \mathrm{in} . / \mathrm{min}
\end{aligned}
$$

