
Intuitively,	the	data	represented	by	any	triangular	adjacency	matrix	exhibits	a	high	
degree	of	rankability	because	it	provides	both	a	completeness	of	information	about	
pairwise	comparisons	(a	completeness	referred	to	as	the	matrix’s	density)	and	a	
nearly-linear	graph	structure.	Now,	even	if	a	matrix	is	not	perfectly	triangular,	if	its	
rows	can	be	reordered	into	this	general	structure,	the	rankability	of	the	data	can	be	
approximated	via	the	number	and	location	of	nonzero	elements	that	prevent	the	
formation	of	a	perfect	triangular	structure	(Figure	B).

A cycle of length k from a node to itself is called a k-
cycle. The longer the dominance chain that loops back
onto itself, the worse the inconsistency.

Investigating	“Rankability”	Using	Distributed	Graph	Analytic	Frameworks
John	Cobb,	Austin	Hunt,	Amy	Langville,	and	Paul	Anderson

Departments	of	Mathematics	and	Computer	Science,	College	of	Charleston,	Charleston	SC
Introduction	and	Objective

Matrix	Structures	and	Rankability

Measuring	Graph	Structure Spark	Implementation

Our research focuses on developing lightweight and scalable measures of rankability using
inherent graph structures using Apache Spark. Potentially useful statistics of a graph
include the density of the adjacency matrix, the number of strongly connected
components, the extent to which the adjacency matrix can be reordered to upper
triangular form, the distribution of k-cycles, and the mean recurrence time of a random
walk.

Acknowledgements
Acknowledgment is made to the Dean’s Summer Fund for financial support
of this research. Further thanks to Dr. Tim Chartier of Davidson College, the
IGARDS team, AMPlab at UC Berkeley, and Tresata for the support and
materials necessary for the making of this poster.

Ranking is an essential data science task
that is embedded in nearly every part of
translating computational and algorithmic
results into a form a human can use. Its
applications include cybersecurity, web
searches, machine learning, bioinformatics,
and business decisions among others.
Rankability refers to the ability of a dataset
to produce a meaningful ranking. While
thousands of ranking algorithms have been
developed, during the pursuit many
foundational issues have been overlooked
such as: Can this ranking be trusted? Are
parts of the ranking too similar to be
disambiguated and possibly meaningless?
How can rankability be quantified? Can
rankable subgraphs be identified? At what
point is a dynamic, time-evolving graph
rankable?

Graph	Parallel	Framework

Conclusions	and	Future	Directions
• Although a pure count of k-cycles remains the most promising metric, further

investigation is needed before trusting “approximations” such as Mean Recurrence
Time.

• If mean recurrence time could be more faithfully linked to global rankability, then
sensitivity analysis could be redeveloped to use MRTs rather than choosing an arbitrary
ranking method. For example, removing a sample of the graph and observing the ratio
of MRTs which then go to infinity could provide global rankability information.

• Although our measures follow an intuitive path, a more formal definition of ranking
would help standardize otherwise wandering conceptions of rankability.

• A graph’s Laplacian L may provide interesting insight into cluster: intercluster link ratio.
The dimension of L is the number of connected components while the second smallest
eigenvalue is the Fiedler value (connectivity).

• Although we have left clustering methods relatively unexplored, their results or
optimization routes are likely to hold information about graph structure. In particular,
David Gleich at Purdue has developed a clustering method that clusters by motif- or
small graph structures. In our case, it might be helpful to cluster by k-cycles of varying
length.

Graphx, like most graph-parallel systems, use
the bulk synchronous execution model
(Right), in which all vertex programs run
concurrently in a sequence of supersteps
operating on the adjacent vertex-program
state or on messages from the previous
super-step. The abstraction is sufficiently
expressive to support a wide range of
algorithms on large clusters.

The same restrictions that enable graph-
parallel systems to our perform
contemporary data-parallel systems when
applied to graph computation also limit their
applicability to many of the operations found
in a typical graph analytics pipeline. In a
sense, linear algebra would need to be
rewritten with respect to these partitioning
schemes to support scalability.

K-cycles

Right: Rating vectors reveals the impact of a 4 cycle
on an otherwise rankable weakly dominant graph.

Creating	a	Rankability Toolbox

Above: Method signatures of rankGraph class used to explore rankability questions on
large scale graphs.

DEPARTMENTS OF 
COMPUTER SCIENCE AND 

MATHEMATICS

Weakly	Dominant 4-cycle	perturbation

r

Winning	percentage Strength	of	schedule	correction

Colley	iterative	scheme

Triangular	Weightedness and	Reordering

Figure	B

The ability of a dataset to be linearly ordered can be gauged via the observance of certain
unique properties within the set’s adjacency matrix, namely the weightedness of its
elements toward the upper or lower triangle and, more indirectly, its density. Note that
while the weightedness of the matrix mass toward the upper or lower triangle can be
directly used as a metric for how rankable the corresponding data is, the density of the
matrix is positively correlated with only the potential for a graph’s rankability. The figures
below will help to explain these correlations.

Note the following correlations:
1) As the number of nonzero elements preventing perfect triangular structure, or the

number of violations, increases, the data’s rankability decreases. (More violations
implies more k-cycles, and more k-cycles imply that the dataset is more difficult to
reduce to a single linear dimension)

2) As any nonzero element preventing the adjacency matrix’s perfect triangular structure
moves farther away from the mass of the matrix, the data’s rankability decreases.

Example: edge e in Figure B is in the very bottom left of the nearly upper
triangular adjacency matrix, meaning there is a cycle of maximum length 5 in the
graph, which generally implies low rankability since cycles prevent consistent
linear ordering of data within them, and cycles of greater length imply a greater
degree of inconsistencies.

Figure	A	demonstrates	that	the	data	
represented	in	the	upper	triangular		
adjacency	matrix	is	very	rankable,	in	
that	the	edges	in	the	corresponding	
directed	graph	are	unidirectional	(all	
downward),	and	thus	closer	to	a	one-
dimensional	ordering.		

Upon	reordering	into	general	upper	triangular	
form,	it	can	be	seen	that	one	edge	(e)	prevents	a	
fully	linear	ordering	of	the	dataset.	In	fact,	the	
nonzero	element	e	in	this	adjacency	matrix	is	
evidence	of	a	k-cycle	in	the	graph	– that	is,	a	cycle	
of	length	k	from	a	node	to	itself.		

Reorder

Figure	A

e

Density
The density of a adjacency matrix could indicate the potential for
rankability as a denser graph contains more information to support a
ranking, although its link to rankability is less clear when these edges
are not unidirectional.

Top: A schematic demonstrating the vertex-central Colley ranking algorithm. The vertex-
program for a vertex v begins by receiving messages that were send along edges from the
previous iteration and computing the sum pairwise to complete the part of Colley in the
red box. Then, the value is funneled into formula to get a point estimate for v.. This whole
process is reiterated with the new ranking found until convergence.

Left: Visualizations of GraphX datatypes (top)
and partitioning (bottom).

The colley GraphX implementation follows the message passing pattern described above,
while methods such as single node sensitivity uses optimized slice methods to generate a
subgraph excluding the input nodes to pass into the colley method.

Since mean recurrence time is node-
specific and developing a linear
ranking is dependent upon pairwise
comparisons (i.e. edges) it can be
difficult to draw any conclusions
about a dataset’s rankability on a
global scale without understanding
the overall distribution of the MRTs
among the data.

Graph rankability could be measured from the histogram of the counts of k-cycles for all
values of k for all nodes in the graph. Identification of k-cycles is NP-hard, and thus a very
expensive measure of rankability. The k-cycle measure serves as a standard against which
the other less expensive rankability measurements are created.

Mean	Recurrence	Times

Interpreting	MRT	Distributions
In order to draw a connection between these distributions and the rankability of a
dataset, it’s important to note the correlation between MRT and k-cycles in the graph.
Since MRT is defined as the average number of steps it takes to return to node i upon
leaving it, then a low MRT for node i (ex: MRT of node i = 2 or 3 in a graph of 100 nodes)
suggests that node i is contained in more small k-cycles than in large ones. On the other
hand, if the MRT of node i is larger (ex: MRT of node i = 95 in same 100-node graph), it is
contained in a higher number of large cycles (approximately 95 edges in length). Now, if
the global distribution of MRTs is weighted toward a lower value, this suggests that the
graph contains a greater proportion of small k-cycles (see Figure D).

Mean Recurrence Time (MRT) for a node is the average number of steps, upon leaving
node i, it takes to return to node i. It is one of many statistics that is derived from a
random walk. The MRT can be thought of as approximating the k-cycle histogram.

900

950

1000

1050

1100

1150

0 20 40 60 80 100 120 140

Right: Color-mapped MRT
distribution of a graph
alongside histogram.
Mean Recurrence Time
(MRT) for a node is the
average number of steps,
upon leaving node i, it takes
to return to node i. It is one
of many statistics that is
derived from a random
walk. Figure	C

Figure	D
High	Ratio	of	Low	MRTs

MRT	

Fr
eq

ue
nc
y

Low High

neighborhood of node i is comparatively more linear, and thus more rankable, than it
would be if node i had a low MRT. However, as mentioned in the previous sections, high
MRTs are evidence of long dominance cycles, which of course have poor implications for
the rankability of any dataset. This raises quite a rich question which has yet to be
definitely answered: does a greater number of small k-cycles have a stronger negative
correlation with a dataset’s rankability than a small, fixed number of large k-cycles?

Improving	Rankability	via	Sensitivity	Analysis
By observing which edges and nodes impact the ranking
most (impact can be quantified by Euclidean distance
between initial and final rating vectors upon removal of
sensitive node/edge), a graph’s rankability may be
improved simply by gathering more pairwise comparison
information surrounding the highly sensitive element(s).

(sensitive)

On	the	other	hand,	if	
the	distribution	is	more	
weighted	toward	higher	
MRTs,	then	there	are	
more	nodes	contained	
within	large	k-cycles.	
On	a	local	level,	if	node	
i carries	a	high	MRT,	this	
might	suggest	that	the

Figure	E
For example, the rankability of the graph in Figure E could be improved by collecting more
comparison data between the two clusters (i.e. cluster [1,4] and cluster [5,8]) to augment
the single edge between nodes 4 and 5, because this single intercluster link has the
greatest impact on the global ranking.

class rankGraph() {
//	imports
def buildTennisGraph(filepath: String): Graph[String,	Double] = {} //builds	graph	based	off	tennis	database
def colley(graph: Graph[String,	Double]): Graph[(String,	Double),	Double] = {} //runs	colley until	convergence,	returns	colley ratings	as	vertex	attribute
def removeNode(identifier: Long, graph: Graph[String,Double]): Graph[String,Double] = {} //removes	a	given	node	from	graph
def sampleGraph(): Graph[String,	Double] = {} //returns	a	graph	with	known	attributes	to	run	tests	on
def singleNodeSensitivity(node: VertexId, graph: Graph[String,	Double], initRank: Graph[(String,	Double),	Double] ): Double = {} //finds	sensitivity	of	single	node
def sampleEdges(graph: Graph[String,	Double], fraction: Double): Graph[String,	Double] = {} //sample	given	percentage	of	edges	from	graph
def sampleNodes(graph: Graph[String,	Double], fraction: Double): Graph[String,	Double] = {} //sample	given	percentage	of	nodes	from	graph
def replaceNode(inputGraph: Graph[(String,	Double),	Double], newNode: (VertexId,(String, Double)) ): Graph[(String,	Double),	Double] = {} //	replaces	given	node	from	input	
graph
def buildGraphFromMatrix(matrix: Array[Array[Int]]): Graph[String,Int] = {} //	creates	a	graph	object	from	an	adjacency	matrix
def toGexf(graph: Graph[String,	Double]) = {} //	creates	a	.gexf file	based	on	graph	to	be	read	by	popular	graph	visualization	software
}//end	class


